
clSpMV: A Cross-Platform OpenCL SpMV Framework on
GPUs

Bor-Yiing Su
University of California, Berkeley

EECS Department
subrian@eecs.berkeley.edu

Kurt Keutzer
University of California, Berkeley

EECS Department
keutzer@eecs.berkeley.edu

ABSTRACT
Sparse matrix vector multiplication (SpMV) kernel is a key
computation in linear algebra. Most iterative methods are
composed of SpMV operations with BLAS1 updates. There-
fore, researchers make extensive efforts to optimize the SpMV
kernel in sparse linear algebra. With the appearance of
OpenCL, a programming language that standardizes par-
allel programming across a wide variety of heterogeneous
platforms, we are able to optimize the SpMV kernel on many
different platforms. In this paper, we propose a new sparse
matrix format, the Cocktail Format, to take advantage of the
strengths of many different sparse matrix formats. Based
on the Cocktail Format, we develop the clSpMV framework
that is able to analyze all kinds of sparse matrices at runtime,
and recommend the best representations of the given sparse
matrices on different platforms. Although solutions that are
portable across diverse platforms generally provide lower
performance when compared to solutions that are special-
ized to particular platforms, our experimental results show
that clSpMV can find the best representations of the input
sparse matrices on both Nvidia and AMD platforms, and de-
liver 83% higher performance compared to the vendor opti-
mized CUDA implementation of the proposed hybrid sparse
format in [3], and 63.6% higher performance compared to
the CUDA implementations of all sparse formats in [3].

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Parallel programming;
C.1.2 [Processor Architectures]: Single-instruction-stream,
multiple-data-stream processors (SIMD)

General Terms
Performance

Keywords
clSpMV, OpenCL, GPU, SpMV, Sparse Matrix Format, Au-
totuner, Cocktail Format

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

1. INTRODUCTION
In scientific computation, operations research, image pro-

cessing, data mining, structural mechanics, and other fields,
the system matrices are naturally sparse, and sparse ma-
trix algorithms are required for analysis. Iterative meth-
ods are widely used to solve linear systems and find eigen
decompositions. Many iterative methods are composed of
sparse matrix vector multiplication (SpMV) operations with
BLAS1 updates, such as the conjugate gradient method and
the Krylov subspace methods [22]. Since the matrix size
is orders of magnitude larger than the vector, the SpMV
operations dominate the execution time of these iterative
methods. In order to accelerate these iterative methods it is
essential to optimize the SpMV kernel.

The SpMV kernel is notorious for its extremely low arith-
metic intensity (the upper bound of the flop:byte ratio is
0.25, two flops for eight bytes on single precision floating
point data type), and irregular memory access patterns [20].
The SpMV kernel is a pure memory bounded problem as
shown in [21]. Although the peak floating point operations
per second (FLOPS) of modern microprocessors are increas-
ing rapidly, the maximum memory bandwidth is not im-
proving at a similar pace. Therefore, the SpMV kernel usu-
ally performs poorly, achieving only 10% of the peak per-
formance on single core cache based microprocessors [18].
Studies to improve performance of the SpMV kernel can be
categorized into two directions: applying architecture spe-
cific optimizations, and applying new sparse matrix formats.

Interest in SpMV has increased with the advent of more
powerful multi-core CPUs and many-core GPUs. Williams
et al. [20] evaluates different optimization strategies on AMD
Opteron X2, Intel Clovertown, Sun Niagara2, and STI Cell
SPE. Bell and Garland [3] optimizes different SpMV ker-
nels with different sparse matrix formats on Nvidia GPUs.
Bordawekar and Baskaran [4] further optimizes the SpMV
kernel with the Compressed Sparse Row (CSR) sparse ma-
trix format on Nvidia GPUs. Choi et al. [6] implements
Blocked Compress Sparse Row (BCSR) and Sliced Blocked
ELLPACK (SBELL) formats on Nvidia GPUs.

Researchers have also proposed various sparse matrix for-
mats with the goal of minimizing the memory footprint, and
enforcing some regularity on the access pattern. Buluc et
al. [5] uses the symmetric Compressed Sparse Block (CSB)
and the bitmasked register block data structures to min-
imize the storage requirement of blocked sparse matrices.
Monakov et al. [13] proposes the Sliced ELLPACK (SELL)
format as an intermediate format between the CSR and the
ELL format. Vázquez et al. [17] suggests the ELLPACK-R

format that can preserve the data alignment requirement on
Nvidia GPUs.
Different sparse matrices have different characteristics, and

different microprocessors have different strengths. In order
to achieve the best SpMV performance for a specific sparse
matrix on a specific microprocessor, an autotuner is required
to adjust the sparse matrix parameters and the platform pa-
rameters. The Optimized Sparse Kernel Interface (OSKI)
library [18] is the state-of-the-art collection of sparse ma-
trix operation primitives on single core cache based micro-
processors. It relies on the SPARSITY framework [11] to
tune the SpMV kernel. The major optimization strategy in-
cludes register blocking and cache blocking. Autotuning is
used in [6,13] to find the best block sizes and the slice sizes
of the given sparse matrices on Nvidia GPUs. Guo and
Wang [10] also autotune the implementation parameters of
the CSR SpMV implementation on Nvidia GPUs. Grewe
and Lokhmotov [8] develop a code generator to generate
CUDA and OpenCL code for SpMV kernels that can facil-
itate the autotuning process. However, the paper focuses
on the generated CUDA code. For OpenCL code, only CSR
SpMV results are presented. It is unclear how it will perform
on other sparse matrix formats.
The micro-architectures of parallel microprocessors are in-

creasing in their diversity. As a result, different hardware
vendors develop their own languages to exploit parallelism
in their architectures, such as SSE [15] and AVX [12] for
x86, CUDA [14] for Nvidia GPUs, and Stream [1] for AMD
GPUs. Fortunately, the leaders of the parallel comput-
ing industry have standardized parallel computations with
OpenCL [16]. The goal of OpenCL is to make parallel code
portable to heterogeneous platforms. With OpenCL, we can
expect to develop an autotuner that can tune the SpMV
performance on every existing parallel platform. This is the
ultimate goal of the clSpMV project. However, the paral-
lelization strategies on different platforms are different. In
this paper, we show how the clSpMV framework can be used
to tune the performance of SpMV on GPU platforms.
There are three major contributions of this work:
1. This is the first SpMV OpenCL work that covers a

wide spectrum of sparse matrix formats (9 formats in
total).

2. We propose a new sparse matrix format, the Cocktail
Format, that takes advantage of the strengths of many
different sparse matrix formats.

3. We have developed the clSpMV framework, the first
framework that is able to analyze the input sparse ma-
trix at runtime, and recommend the best representa-
tion of the given sparse matrix. It is also the first
framework that can optimize the SpMV kernel across
different GPU platforms.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the new proposed Cocktail Format. Sec-
tion 3 introduces the clSpMV framework in detail. Section
4 explains our platforms of choice, the supported 9 differ-
ent sparse matrix formats, and the parallelization strategies
on the target platforms. The experimental results are sum-
marized in Section 5. Finally, the conclusions are given in
Section 6.

2. THE COCKTAIL FORMAT
As stated in Section 1, many SpMV studies have devel-

oped novel sparse matrix formats. However, there is no one-

size-fits-all solution. Every sparse matrix representation has
its own strengths and weaknesses as explained in Section
4. The symmetric CSB, the bitmasked register block data
structures in [5], the BCSR, and the SBELL data structures
in [6] all assume dense blocks in the sparse matrix. The per-
formance of the SELL format in [13] and the ELLPACK-R
format in [17] relies on the variation of the numbers of non-
zero per row in the sparse matrix. The experimental results
in [3] also shows that the best SpMV results are heavily
dependent on the choice of the sparse matrix format.

Based on the observation that different sparse matrix for-
mats are good at different sparse matrix structures, we have
developed the Cocktail Format to take advantages of differ-
ent matrix formats. The Cocktail Format is a combination
of many different sparse matrix formats. The Cocktail For-
mat partitions a given matrix into several submatrices, each
specialized for a given matrix structure. The trivial case
finds a single best format for a given sparse matrix. The
most complicated case is to partition the sparse matrix into
many submatrices, and represent different submatrices using
different formats. The list of sparse matrix formats in the
Cocktail Format can be arbitrary. In clSpMV, we support 9
sparse matrix formats in 3 categories. The 3 categories and
the 9 matrix formats are summarized as following, and will
be further explained in Section 4:

• Diagonal based category: formats that store dense di-
agonals.

– DIA: stores dense diagonals.
– BDIA: stores a band of diagonals together.

• Flat category: formats that need a column index for
every non-zero data point on the sparse matrix.

– ELL: packs non-zeros into a dense matrix.
– SELL: cuts the matrix into slices, and use differ-

ent ELL settings for each slice.
– CSR: the common compressed sparse row format.
– COO: the common coordinate format.

• Block based category: formats that store dense blocks.
– BELL: the blocked variant of the ELL format.
– SBELL: the blocked variant of the SELL format.
– BCSR: the blocked variant of the CSR format.

There exists works that partition a sparse matrix into
many submatrices. However, the partitions are very re-
stricted. Vuduc [19] partitions the sparse matrix into 2 to
4 submatrices with different dense block sizes. However, it
only focuses on the BCSR format. If the number of dense
blocks per row is regular, the BELL format will be a better
choice. [3] partitions the sparse matrix into the ELLPACK
portion and the COO portion. However, it does not take
advantage of dense blocks in the matrices. The Cocktail
Format is the first proposal that partitions the matrix into
many different specialized regions.

3. THE CLSPMV FRAMEWORK
Based on the Cocktail Format, every sparse matrix can

be partitioned into many submatrices. However, it is very
challenging to find the best partitioning scheme of the given
sparse matrix. Moreover, each sparse format can have many
different parallelization strategies. Assuming the Cocktail
Format is composed of k sparse matrix formats f1, f2, . . . , fk.∪k

i=1 fi = F . For a matrix format fi, assuming there exists

bi implementations pi1, pi2, . . ., pibi .
∪bi

j=1 pij = Pi. Let

t(A, fi, pij) be the execution time of the SpMV kernel using

format fi and implementation pij on matrix A. The matrix
partitioning problem can be formulated as following:

• Problem CMP (Cocktail Matrix Partitioning): Given
sparse matrix A, the k sparse formats in the Cock-
tail Format, the bi implementations of format fi, find
k submatrices A1, A2, . . . , Ak, and k implementations
L1, L2, . . . , Lk such that

∑k
i=1 Ai = A, L1 ∈ P1, L2 ∈

P2, . . . , Lk ∈ Pk, and the value of
∑k

i=1 t(Ai, fi, Li) is
minimized.

The CMP problem is a NP-complete problem. For a
sparse matrix with n non-zeros, and the Cocktail Format
with k formats, the size of the sample space is O(kn ×
max
1≤i≤k

bi). If we allow single non-zero being covered by mul-

tiple formats, the sample space is even larger. Moreover,
function t(A, fi, pij) is nonlinear. The actual execution time
will depend on the thread scheduler, system load, cache be-
havior, and many other factors.

3.1 Overall Structure of the clSpMV Frame-
work

In addition to the CMP problem, we also need to compute
the t(A, fi, pij) function. When multiple implementations of
a single sparse matrix format are available, most autotuners
execute all implementations exhaustively to find the best
implementation [8, 10, 13]. This strategy will give us the
exact t(A, fi, pij) value, but is very time consuming. For
the Cocktail Format, the brute force search strategy will in-
volve expensive reformatting the submatrices, because the
submatrices may need to be adjusted frequently. The over-
head is unacceptable. Some autotuners develop models of
some specific architectures, and predict performance based
on the models [6]. This strategy is applicable, but requires
significant effort. For each platform we support, we need to
develop its performance model. Then we need to apply the
performance model on every implementation. Once a new
platform is released, we need to go through the entire pro-
cedure again. For portability concerns, this is not the best
strategy.
Following the philosophy of OSKI [18], the clSpMV frame-

work is composed of two stages. The offline benchmarking
stage and the online decision making stage. The goal of the
offline benchmarking stage is to sample some performance
data with different sparse matrix settings, and to provide
a way of estimating the value of t(A, fi, pij). The online
decision making stage then solves the CMP problem.

3.2 The Offline Benchmarking Stage
The purpose of the offline benchmarking stage is to solve

the performance approximation problem. Given a sparse
matrix format fi, and a corresponding implementation pij ,
the offline benchmarking stage will sample the execution
time on different sparse matrix settings. The sparse matrix
settings include matrix dimensions, total number of non-
zeros, average number of non-zeros per row, variations of
number of non-zeros per row, and so forth. The sample den-
sity controls the trade-offs between approximation accuracy
and the offline benchmarking time. More data points with
wider matrix settings will yield better approximation results,
but it requires more offline benchmarking time. Given an
arbitrary sparse matrix, the execution time can be approxi-
mated by interpolating nearby data points.
In our current implementation, we only consider matrix

dimensions and average number of non-zeros per row, and
benchmark on dense banded matrices. The performance
benchmarking results for Nvidia GTX 480 and AMDRadeon
6970 are summarized in Figure 10 and Figure 11, and will
be discussed in Section 5. When sampling on the matrix di-
mensions, we want to have representative data for the case
that the processors are under-utilized most of the time, and
the case that all processors are saturated. Therefore, we
choose to use an exponential scale, ranging from 210 to 221.
When sampling on the number of non-zeros per row, we
need to cover the case that the matrix is extremely sparse,
to the case that every row has enough work to saturate all
processors for a while. As will be discussed in Section 4, the
parallelization strategies for different formats are different,
so the sampling density of different formats are different. If
the parallelization strategy is based on having different work
items working on independent rows, having the number of
non-zeros ranging from 1 to 64 should be enough. On the
other hand, if the parallelization strategy is based on hav-
ing multiple work items working on the same row, we will
need hundreds to thousands non-zeros per row to saturate
the processors.

For the 9 sparse matrix formats, we have 75 implemen-
tations in total, and we need to collect hundreds of sample
points on each implementation. Including generating the
sparse matrices with different dimensions and number of
non-zeros per row, the offline benchmarking stages on both
the Nvidia platform and the AMD platform take about half
a day. However, it is a one-time cost. We only need to
benchmark on a platform once, and the benchmarking re-
sults can be used to tune the performance of SpMV on as
many sparse matrices as we want.

3.3 The Online Decision Making Stage
This stage solves the CMP problem by analyzing the input

sparse matrix. We achieve this goal by collecting matrix
features and enforcing partition policies.

Transforming a matrix from a format to another is very
time and memory consuming. The clSpMV framework tries
to explore the design space of 30 different formats (block
based formats with different block dimensions are consid-
ered as different formats here), so it is infeasible to analyze
the structures of all the matrix formats by converting to the
formats. Instead we only collect statistical features that are
representative of different matrix formats. When collecting
features for diagonal formats, we maintain a histogram to
count the number of non-zeros per diagonal. When collect-
ing features for blocked formats, we maintain two histograms
for each block dimension. One histogram counts the number
of blocks per superrow. A superrow is defined on a blocked
matrix as a submatrix of h rows, where h is the height of
the block. The other histogram only counts the number of
dense blocks per superrow. The definition of a dense block
is given in the partition policies. The first histogram is used
to estimate the execution time if we store the entire matrix
using the blocked formats. The second histogram is used
to estimate the execution time if we only store the dense
blocks of the matrix using the blocked formats. When col-
lecting features for flat formats, we maintain a histogram
to count the number of non-zeros per row. The feature his-
tograms are used to capture the characteristics of a matrix
under different formats. In the partition policies, we also

make our partition decisions based on the collected feature
histograms.
The solution space of the CMP problem is enormous, so

we use greedy policies to partition the sparse matrix. The
policies are based on our analysis of the strengths and weak-
nesses of the formats as will discussed in Section 4. Accord-
ing to the 9 supported sparse matrix formats, we use the
following policies:

• Priority of the categories: the priority of the 3 cate-
gories (the diagonal based category, the flat category,
and the block based category) are decided by the max-
imum estimated performance of that category accord-
ing to the current matrix settings explored in the of-
fline benchmarking stage.

• Dense Diagonals: let gd be the maximum GFLOPS the
diagonal category can achieve under the current ma-
trix settings. Let gf be the maximum GFLOPS the
flat category can achieve under the current matrix set-
tings. A diagonal with dimension nd is considered to
be dense if its non-zero number ed satisfies the follow-
ing formula:

ed > nd × gf
gd

• BDIA vs DIA: choose the maximum achievable GFLOPS
in the following 3 cases: only using BDIA, only using
DIA, using BDIA to represent thick bands and DIA to
represent disjoint diagonals or thin bands.

• Dense Blocks: let gd be the maximum GFLOPS the
block category can achieve under the current matrix
settings and the given block size. A block with size
nb is considered to be dense if its non-zero number eb
satisfies the following formula:

eb > nb ×
gf
gb

• SBELL vs BELL vs BCSR: choose the maximum achiev-
able GFLOPS in the following 3 cases: only using
SBELL, only using BELL, only using BCSR.

• ELL and SELL vs CSR and COO: let the maximum
achievable GFLOPS of ELL, SELL, CSR, and COO
are gELL, gSELL, gCSR, and gCOO, respectively. Use
CSR and COO if mc = max(gCSR, gCOO) > me =
max(gELL, gSELL). Otherwise, extract the ELL and
SELL portion first, then represent the remaining non-
zeros using CSR or COO.

• Extract ELL: let w be the ELL width (the definition of
ELL width is given in Section 4), let c be the number of
columns of the matrix, let z(w) be the zero paddings
when the ELL width is w, and let e(w) be the non-
zeros covered by the ELL format with width w. w is
decided by solving the following problem:

max w
s.t. (z(w) + e(w))/gELL < e(w)/mc

w ≤ c
w ∈ N

The possible values of w is bounded by c, so we use
brute force method to solve this problem.

• Extract SELL: the idea is the same as extracting ELL.
The only difference is to consider the ELL width of
each slice independently.

• ELL vs SELL: choose the one that has higher achiev-
able GFLOPS value.

• CSR vs COO: the decision is based on the load balanc-
ing issue of CSR. Assuming there are u work groups in
the CSR implementation. Let nnz(i) be the number
of non-zeros computed by work group i. For a matrix
with n non-zeros, use the CSR format if the following
rule is satisfied:

u× max
1≤i≤u

nnz(i)

gCSR
<

n

gCOO

• Merge small submatrices: merge a submatrix into an-
other existing submatrix if such behavior results in bet-
ter estimated performance.

The Cocktail Format is a superset over many single sparse
matrix representations. Theoretically, the SpMV perfor-
mance of the Cocktail Format should be at least the same
as the SpMV performance of every format it covers. In
practice, the performance depends on the policies of the
clSpMV framework, and the accuracy of the estimated exe-
cution time (the value of the t(A, fi, pij) function). This is a
trade-off between analysis time and the SpMV performance.
If we use more complicated policies and more accurate exe-
cution time estimates, we can find better matrix partitions,
and achieve higher SpMV performance. However, it requires
more analysis time. The analysis overhead of OSKI is about
40 SpMVs. clSpMV takes 1 SpMV for diagonal analysis, 20
SpMVs for block analysis of one block size, and 4 SpMVs
for flat analysis.

Because the matrix analysis overhead is not trivial, clSpMV
will be ideal for iterative methods that perform SpMV on
a single sparse matrix for hundreds or thousands of times.
Moreover, if the framework user is dealing with matrices
with similar structures, one can perform full analysis on
some exemplar matrices, and use the knowledge one gained
from the experiments to speed up the analysis of future ma-
trices. For example, if the exemplar matrices do not have
any dense blocks, one can advise clSpMV to skip the analy-
sis of the block based formats. To further reduce the analysis
overhead, we can also follow the strategy used in [19]. In-
stead of analyzing the entire matrix, we can randomly sam-
ple the non-zeros of the matrix and make decision based on
the samples. Since most of the analysis is based on counting
(counting the number of non-zeros in a diagonal/in a block),
we can also parallelize the analysis procedure to further re-
duce the overhead.

4. SPARSE MATRIX FORMATS AND PAR-
ALLELIZATION STRATEGIES ON GPU
PLATFORMS

As introduced in Section 2 and Section 3, the clSpMV
framework is an autotuner of the SpMV kernel across all
platforms supporting OpenCL. It uses the Cocktail Format
that combines many sparse matrix formats together. It also
dynamically decides the representation of a given sparse ma-
trix at runtime. The idea of the Cocktail Format and the
idea of the clSpMV framework are platform independent.
However, the optimized implementation of the SpMV ker-
nel of every single format is platform dependent. In this
section, we will discuss our platform of choice, and the op-
timized implementations of the 9 supported formats on the
target platforms.

4.1 Target Platforms
The concept of the Cocktail Format is to take advantage of

the strengths of a set of different sparse matrix formats. The
idea of the clSpMV framework is to plug in many implemen-
tations of many SpMV kernels, performing analysis on the
matrices, and to decide the best partition of the matrices.
No matter what is the final decomposition of the matrices,
the SpMV performance fully depends on the implementa-
tions of all supported formats. Because different platforms
have different characteristics, there is no one-size-fits-all so-
lution. To get the best performance, the implementations of
the SpMV kernels should be platform dependent. Although
many different platforms support OpenCL, they favor dif-
ferent parallelization strategies. For example, CPU based
platforms favor coarse-grained parallelism, while GPU based
platforms favor fine-grained parallelism. Because SpMV is a
memory bounded problem [21], and modern GPU platforms
have more memory bandwidth than DRAM, we decide to
start by plugging in GPU-optimized SpMV kernels in our
clSpMV framework. In the future, the clSpMV framework
can support more platforms through more platform depen-
dent implementations. Since we have decided to target GPU
platforms, we will discuss the matrix formats and their cor-
responding parallelization strategies on GPU platforms in
the following sections.

4.2 Diagonal Based Formats

B =

3 7 0 0
0 4 8 0
1 0 5 9
0 2 0 6

 (1)

The diagonal based formats are the formats that capture
dense diagonals. We will use matrix B in Equation (1) to
explain the data structure of the formats in this category.

4.2.1 DIA Format

Offsets = [-2 0 1]
Data = [0 0 1 2, 3 4 5 6, 7 8 9 0]

Figure 1: The DIA format of matrix B.

As explained in [3], the diagonal (DIA) format is com-
posed of two arrays, the Offsets array that stores the off-
sets of each diagonal, and the Data array that stores the
dense diagonals. Figure 1 shows the DIA format of matrix
B. The parallelization strategy of the DIA kernel is similar
to [3]. Each work item is responsible for one row of the ma-
trix. Because AMD platforms favor explicit vectorization by
using the float4 data type [2], we also implement the ker-
nel that each work item being responsible for four rows of
the matrix. Moreover, we implement kernels that use tex-
ture memory and kernels that do not use texture memory to
store the multiplied vector. In the following we summarize
the pros and cons of the DIA format:

• Pros: It does not need explicit column indices for each
non-zero data. It has single-stride and aligned access
on the matrix data. It also has single-stride access on
the multiplied vector.

• Cons: It needs zero paddings in the Data array to en-
sure the lengths of all diagonals are the same. On

sparse diagonals, the zero padding overhead might be
significant.

4.2.2 BDIA Format

Offsets = [-2 0]
BandPtr = [0 1 3]
Data = [0 0 1 2, 3 4 5 6, 7 8 9 0]

Figure 2: The BDIA format of matrix B.

The banded diagonal (BDIA) format is a variation of the
DIA format. Instead of storing disjoint diagonals, it stores
a band as a whole. This format is composed of three arrays.
The Offsets array stores the offset of the first diagonal in
each band. The BandPtr array stores the position of the
first element of each band. In other words, the elements of
band i are stored between BandPtr[i] and BandPtr[i + 1].
The Data array is exactly the same as the Data array in the
DIA format. Figure 2 shows the BDIA format of matrix B.

The parallelization strategy of the BDIA is very similar
to the DIA format. We have implementations where each
work item is responsible for one matrix row, and have imple-
mentations where each work item is responsible for 4 matrix
rows using the float4 data type. The major difference be-
tween the DIA format and the BDIA format comes from the
fact that the diagonals in a band are consecutive, so we can
predict the vector sections that each work item is accessing.
For example, assuming that the size of a work group is 128.
Assuming that work item r to work item r+127 in this work
group are responsible for row r to row r+127, respectively.
Considering a band with d diagonals, and the offset of the
first diagonal being o, the work item i will access vector ele-
ments o+ i, o+ i+1, . . . , o+ i+d−1. The entire work group
will access vector elements o+r, o+r+1, . . . , o+r+127+d−1.
The consecutive vector section can be cached into the shared
local memory. We have implemented kernels that use this
caching strategy, and kernels that do not use this caching
strategy. In the following we summarize the pros and cons
of the BDIA format:

• Pros: It does not need explicit column indices for each
non-zero data. It has single-stride and aligned access
on the matrix data. It also has single-stride access on
the multiplied vector. It can use shared local memory
to cache the multiplied vector.

• Cons: It needs zero paddings in the data array to en-
sure the lengths of all diagonals are the same. On
sparse diagonals, the zero padding overhead might be
significant. Compared to the DIA format, it requires
an additional BandPtr array.

4.3 Flat Formats
The flat formats are the formats that need explicit storage

of the column indices of all non-zeros. We will use matrix B
to explain the data structure of the formats in this category.

4.3.1 ELL Format
The idea of the ELLPACK (ELL) format [9] is to pack all

non-zeros towards left, and store the packed dense matrix.
Assuming the packed dense matrix has dimension m × n.
The ELL width of the matrix will be n, the width of the
packed dense matrix. The ELL format is composed of two

arrays, the Col array stores the column indices of all ele-
ments in the dense m×n matrix. The Data array stores the
values of the dense m× n matrix. Figure 3 shows the ELL
format of matrix B. The parallelization strategy is similar
to [3]. Each work item is responsible for one row of the ma-
trix. Considering platforms that favor explicit vectorization
such as the AMD GPUs, we also have the implementation
that each work item is responsible for 4 rows using the float4
data type. Again, kernels using texture memory and kernels
not using texture memory to cache the multiplied vector are
all included. In the following we summarize the pros and
cons of the ELL format:

Col = [0 1 0 1, 1 2 2 3, 0 0 3 0]
Data = [3 4 1 2, 7 8 5 6, 0 0 9 0]

Figure 3: The ELL format of matrix B.

• Pros: The access pattern of the Col and the Data ar-
rays is single-stride and aligned.

• Cons: Assuming the packed dense matrix has dimen-
sion m×n, the ELL format needs zero paddings on ev-
ery row that has number of non-zeros less than n. The
zero paddings might introduce significant overhead. It
requires random access on the multiplied vector.

4.3.2 SELL Format

SlicePtr = [0 4 10]
Col = [0 1, 1 2; 0 2, 1 3, 3 0]
Data = [3 4, 7 8; 1 2, 5 6, 9 0]

Figure 4: The SELL format of matrix B.

The sliced ELLPACK (SELL) format is proposed in [13].
The idea is to cut the original matrix into slices, and pack
the slices into dense matrices with different dimensions. The
SELL format is composed of three arrays. The SlicePtr

array stores the beginning position of each slice. In other
words, the elements of slice i are stored between SlicePtr[i]
and SlicePtr[i + 1]. The Col array and the Data array
are similar to the ELL format, storing the column indices
and values of each element in the slices. Figure 4 shows
the SELL format of matrix B with slice height 2. The
semicolon in the array is used to separate different slices.
Monakov et al. [13] uses autotuning to find the best slice
height, reorders the matrix to further reduce the necessary
zero paddings, and proposes the variable-height slice format.
According to the experimental results in [13], the matrix re-
ordering technique and the variable-height format only re-
sult in marginal improvements. Since these strategies might
increase the complexity of the policies in the online deci-
sion making stage, current clSpMV does not include these
approaches. Regarding the slice height, we develop kernels
with slice heights equal to multiples of GPU alignment re-
quirement (128 bytes). The parallelization strategy is the
same as that in the ELL format. The only difference is that
we need to cache the SlicePtr array in the local shared
memory. In the following we summarize the pros and cons
of the SELL format:

• Pros: The access pattern of the Col and the Data ar-
rays is single-stride and aligned. It requires less zero
paddings compared to the ELL format.

• Cons: It still needs zero paddings for each slice. The
zero paddings might introduce significant overhead. It
requires random access on the multiplied vector. It
needs an additional SlicePtr array to store the slice
positions.

4.3.3 CSR Format

RowPtr = [0 2 4 7 9]
Col = [0 1, 1 2, 0 2 3, 1 3]
Data = [3 7, 4 8, 1 5 9, 2 6]

Figure 5: The CSR format of matrix B.

The compressed sparse row (CSR) format is the most com-
mon sparse matrix format. It is composed of three arrays.
The RowPtr array stores the beginning position of each row.
In other words, the elements of row i are stored between
RowPtr[i] and RowPtr[i + 1]. The Col array and the Data

array are used to store the column indices and values of
each non-zero. Figure 5 shows the CSR format of matrix
B. [3] proposes two parallelization strategies for the CSR
format. The scalar strategy will let one work item work-
ing on one row of the matrix. The vector strategy will let
one warp of work items working on one row of the matrix.
According to [3], the scalar strategy only outperforms the
vector strategy when the number of non-zeros per row is
small. However, when the number of non-zeros per row is
small, the ELL format will be a better candidate. Therefore,
we only have the vector strategy implemented in clSpMV.
Again, implementations using texture memory and not us-
ing texture memory are both implemented. In the following
we summarize the pros and cons of the CSR format:

• Pros: Need very few zero paddings.
• Cons: It might have unaligned access on both the Col

array and the Data array. The access pattern on the
multiplied vector is random. It might have load bal-
ancing problem if the number of non-zeros per row
varies significantly.

4.3.4 COO Format

Row = [0 0, 1 1, 2 2 2, 3 3]
Col = [0 1, 1 2, 0 2 3, 1 3]
Data = [3 7, 4 8, 1 5 9, 2 6]

Figure 6: The COO format of matrix B.

The coordinate (COO) format explicitly stores the row
indices. It is composed of three arrays. The Row array,
the Col array, and the Data array store the row indices,
the column indices, and the values of all non-zeros in the
matrix, respectively. Figure 6 shows the COO format of
matrix B. The parallelization strategy is the same as [3].
We are performing segmented reduction computation on the
three arrays. However, the implementation in [3] requires
three kernel launches. By padding zeros at the end of three
arrays to match the work group size, we only need two kernel
launches in our OpenCL implementation. In the following
we summarize the pros and cons of the COO format:

• Pros: Need very few zero paddings. There is no load
balancing problem. As shown in [3], it can deliver

consistent performance regardless of the structure of
the matrix.

• Cons: Has the worst memory footprint. It requires
explicit indexing on both row and column indices. It
needs random access on the multiplied vector.

4.4 Block Based Formats

C =

0 1 2 3 g h i j
4 5 6 7 k l m n
8 9 a b o p q r
c d e f s t u v

 (2)

The block based formats are the variations of the flat for-
mats. Instead of storing each non-zero independently, we
store a block contiguously. We are going to use matrix C
in Equation (2) to show exemplars of block based formats.
For block sizes, because AMD platforms always prefers the
float4 data type [2], while Nvidia platforms achieve similar
performance on both float and float4 data types, we decide
to use block sizes that are multiples of 4. Moreover, when
using texture memory to cache the multiplied vector, the
OpenCL API always returns a float4 value. If we do not use
all the 4 elements in the returned value, memory bandwidth
is wasted. Therefore, we choose block sizes with widths be-
ing multiples of 4. The block sizes supported by clSpMV
are 1× 4, 2× 4, 4× 4, 8× 4, 1× 8, 2× 8, 4× 8, and 8× 8.

4.4.1 BELL Format

Col = [0 0, 4 4]
Data = [0 1 2 3, 8 9 a b,

4 5 6 7, c d e f;
g h i j, o p q r,
k l m n, s t u v]

Figure 7: The BELL format of matrix C. The block
size is 2× 4

The blocked ELLPACK (BELL) format is a variation of
the ELL format. Instead of storing singular non-zeros, it
stores a block of consecutive non-zeros. Each block only
needs one column index, so the memory footprint is reduced.
If the height of the block is larger than 1, the same data
read from the multiplied vector can be reused across all the
rows in the block. The BELL format is composed of two
arrays. The Col array stores the column indices of the first
elements from all blocks. The Data array stores the values of
all blocks. Moreover, we need special arrangement to enforce
single-strided memory access on the Data array. Because
the 1 × 4 block is the smallest unit of all block sizes we
support, the Data array is managed in a 2D fashion. The
first dimension corresponds to the data of a 1×4 block. The
second dimension corresponds to the number of 1× 4 units
in the block dimension. Figure 7 shows the BELL format
of matrix C. The block size is 2 × 4, so there are two 1 × 4
units in the block. The Data array can be viewed as a 2×16
array. We store the first 1 × 4 unit of each block, and then
store the next 1× 4 unit of each block.
The parallelization strategy is similar to the ELL format.

However, instead of letting one work item working on a row,
we let one work item work on a superrow. Because the
smallest unit of all block sizes is 1×4, we use the float4 data

type in our implementation. In the following we summarize
the pros and cons of the BELL format:

• Pros: We have single-stride data access on the Data

array. The required memory storage of the column
indices is reduced. If the block has height larger than
1, the segment of the multiplied vector can be cached
in registers, and used across multiple block rows.

• Cons: It needs zero fillings in the blocks. It also needs
zero paddings to make sure that the number of blocks
per row are all the same. The fillings and paddings
might introduce overhead.

4.4.2 SBELL Format

SlicePtr = [0 4 8]
Col = [0 0, 4 4; 0 0, 4 4]
Data = [0 1 2 3, 4 5 6 7,

g h i j, k l m n;
8 9 a b, c d e f,
o p q r, s t u v]

Figure 8: The SBELL representation of matrix C.
The block size is 1× 4. The slice height is 2.

The sliced blocked ELLPACK (SBELL) format is pro-
posed in [6]. Although the data arrangement in clSpMV
is different from [6], the idea is similar. In clSpMV, the
SBELL format is composed of three arrays. The SlicePtr

array stores the beginning position of each slice. In other
words, the elements of slice i are stored between SlicePtr[i]
and SlicePtr[i+1]. The Col array stores the column indices
of the first elements from all blocks. The Data array stores
the values of all blocks. The data of a slice are stored con-
secutively. Like the case in the BELL format, in a slice, the
data of a 1×4 unit are stored consecutively, and the data of
multiple 1 × 4 units will be stacked into a large array. Fig-
ure 8 shows the SBELL format of matrix C, with block size
1 × 4 and slice height 2. Choi el al. [6] also rearranges the
matrix rows to reduce the paddings of the SBELL format.
Because we are using the SBELL format to represent only
the portion of the matrix that is best for SBELL, we believe
the remaining singular non-zeros will be taken care of by the
flat formats. Therefore, we did not try to reorder matrix in
our implementation. The parallelization strategy is similar
to the BELL format. Each work item is responsible for a
superrow. In the following we summarize the pros and cons
of the SBELL format:

• Pros: We have single-stride data access on the Data

array. The required memory storage of the column in-
dices is reduced. If the block has height larger than
1, the segment of the multiplied vector can be cached
in registers, and used across multiple block rows. It
requires less zero paddings compared to the BELL for-
mat.

• Cons: It needs zero fillings in the blocks. It also needs
zero paddings to make sure that the number of blocks
per row in a slice are all the same. The fillings and
paddings might introduce overhead. It also requires
an additional SlicePtr array.

4.4.3 BCSR Format
The blocked compressed sparse row (BCSR) format is also

discussed in [6]. The data arrangement in clSpMV is differ-

RowPtr = [0 2 4]
Col = [0 4, 0 4]
Data = [0 1 2 3, g h i j,

8 9 a b, o p q r;
4 5 6 7, k l m n,
c d e f, s t u v]

Figure 9: The BCSR format of matrix C. The block
size is 2× 4

ent, but the idea is similar. The BCSR format is composed
of three arrays. The RowPtr array stores the beginning po-
sition of each superrow. In other words, the elements of
superrow i are stored between RowPtr[i] and RowPtr[i + 1].
The Col array stores the column indices of the first ele-
ments from all blocks. The Data array stores the values of
all blocks. Like the case in the BELL format, the data of a
1× 4 unit are stored consecutively, and the data of multiple
1×4 units will be stacked into a large array. Figure 9 shows
the BCSR format of matrix C, with block size 2 × 4. The
parallelization strategy is similar to the vector CSR strat-
egy used in [3]. A warp of work items is responsible for a
superrow. In the following we summarize the pros and cons
of the BCSR format:

• Pros: The required memory storage of the column in-
dices is reduced. If the block has height larger than
1, the segment of the multiplied vector can be cached
in registers, and used across multiple block rows. It
does not need to pad zero blocks at the end of each
superrow.

• Cons: It needs zero fillings in the blocks. It might have
unaligned access on the Data array. It might have load
balancing problem.

5. EXPERIMENTAL RESULTS
We can evaluate the performance of clSpMV on different

platforms, given the cross-platform capabilities of OpenCL.
Nvidia and AMD are the major GPU vendors, so we evalu-
ate the framework’s performance on these two different plat-
forms. Since both platforms achieve higher performance on
single precision floating point data type, we use such data
type in our experiments. In this section, we will first in-
troduce the matrices we used for benchmarking, and then
discuss the performance of clSpMV on Nvidia GTX 480
and AMD Radeon 6970. The code from our implementa-
tion is freely available at http://www.eecs.berkeley.edu/
~subrian/clSpMV.html.

5.1 The Benchmarking Matrices
We use the 14 matrices in [20] as our benchmarking ma-

trices. The same set of matrices is also used in [3,6,13]. The
statistics of the matrices are summarized in Table 1. The #
rows column, the # cols column, the # nnzs column, and the
nnz/row column summarize the number of rows, the number
of columns, the number of non-zeros, and the average num-
ber of non-zeros per row, respectively. Unfortunately, this
set contains mostly regular matrices that are well-suited for
single-format representation. Although the clSpMV is able
to find the best single format to represent the matrices, it
is hard to see how the Cocktail Format will further improve
the performance. Therefore, we add 6 additional matrices
from [7] in our benchmarking suite. We choose matrices

that has balanced portions of diagonals, dense blocks, and
random singular non-zeros, matrices that has highly irreg-
ular distributions of the non-zeros, and matrices that have
enough large number of non-zeros such that the overhead
of launching multiple kernels will not be significant. The
statistics of the 6 additional matrices are also summarized
in Table 1.

Table 1: Overview of the sparse matrix benchmark.
Name # rows # cols # nnzs nnz/row

Dense 2K 2K 4M 2000
Protein 36K 36K 4.3M 119

FEM/Spheres 83K 83K 6M 72
FEM/Cantilever 62K 62K 4M 65
Wind Tunnel 218K 218K 11.6M 53
FEM/Harbor 47K 47K 2.37M 50

QCD 49K 49K 1.9M 39
FEM/Ship 141K 141K 3.98M 28
Economics 207K 207K 1.27M 6

Epidemiology 526K 526K 2.1M 4
FEM/Accelerator 121K 121K 2.62M 22

Circuit 171K 171K 959K 6
Webbase 1M 1M 3.1M 3

LP 4K 1.1M 11.3M 2825

circuit5M 5.56M 5.56M 59.5M 11
eu-2005 863K 863K 19M 22

Ga41As41H72 268k 268k 18M 67
in-2004 1.38M 1.38M 17M 12
mip1 66K 66K 10M 152

Si41Ge41H72 186k 186k 15M 81

5.2 Experimental Results on Nvidia GTX 480
We summarize the performance benchmarking results on

the Nvidia GTX 480 platform in Figure 10. The x axis is
the dimension of the matrix. On row 1 and 3, the y axis is
the number of non-zeros per row. On row 2, the y axis is
the number of dense blocks per superrow. The unit of the
color-bar is in GFLOPS. Some performance numbers at the
top-right corners are missing because the matrix storage size
is larger than a pre-defined upperbound. Some performance
numbers at the top-left corners are missing because the ma-
trix is too dense to be considered as a sparse matrix. The
performance of the diagonal based formats are benchmarked
on dense diagonal matrices. Although each diagonal format
has multiple implementations, the heat-map only shows the
best achievable performance among all implementations. As
expected, the performance increases with the increase in ma-
trix dimension and number of non-zeros per row. The peak
performance of the BDIA format is larger than that of the
DIA format. When the number of non-zeros per row is very
small, the DIA format will slightly outperform the BDIA
format. The performance of the block based formats are
benchmarked on dense diagonal blocked matrices. Due to
the space limitations, only the performances of the 1 × 4
blocked matrices are included in the figure. Blocked matrices
with other block dimensions follow the similar pattern. For
the BELL and the SBELL formats, each thread is working
on a superrow, we can get close to peak performance when
there are 20 to 30 dense blocks per superrow. However, for
the BCSR format, because a warp of work items is respon-
sible for a superrow, we need more than 200 dense blocks
per superrow to saturate the processors. The performance
of the flat formats are benchmarked on dense diagonal ma-
trices. The performance patters of the flat formats are very
close to their blocked variations, but their peak achievable

Figure 10: The performance benchmarking on the Nvidia GTX 480 platform. The x axis is the dimension
of the matrix. On row 1 and 3, the y axis is the number of non-zeros per row. On row 2, the y axis is the
number of dense blocks per superrow. The unit of the color-bar is in GFLOPS.

performances are significantly reduced. The COO perfor-
mance is very stable while the dimension of the matrix is
large enough. However, The peak achievable performance is
the lowest among the 9 formats.
To evaluate the performance of clSpMV, we compare the

performance with other implementations on the 20 bench-
marking matrices. We first compare the performance with
[3]. The released code of [3] is based on CUDA, and has
SpMV kernels of the DIA, ELL, CSR, COO, and the HYB
format. The HYB format in [3] is composed of ELL format
and COO format. Therefore, the HYB format is a subset of
our Cocktail Format. Although we also want to compare the
performance of clSpMV with the SELL format in [13] and
the blocked formats in [6], they did not release their code.
As a result, we compare to our own OpenCL implementa-
tions of the SELL, BELL, SBELL, and the BCSR formats
instead.
The experimental results are summarized in Table 2. The

performance is measured by 2×nnz
ExecutionTime

(GFLOPS). Some-
times using texture memory to cache the multiplied vector
will result in higher performance, sometimes not. We eval-
uate both cases and only report the highest number in the

table. The NV HYB column lists the performance achieved
by the CUDA code of the HYB format in [3]. The Best NV
column lists the highest performance achieved among all the
5 implementations supported by [3], including DIA, ELL,
CSR, COO, and HYB. The Best NV Format column lists
the format that achieves the highest performance. The Best
Single column lists the highest performance achieved among
all single formats. Among all single format performances,
the DIA, ELL, CSR, and COO performance is measured us-
ing the CUDA implementations from [3]; the BDIA, SELL,
BELL, SBELL, and BCSR performance is measured using
our own OpenCL implementations. Because we have mul-
tiple implementations of every single format as introduced
in Section 4, such as different block sizes of the block based
formats, only the highest performance numbers among all
implementations are reported. The Best Single Format col-
umn summarizes the format that achieves the highest perfor-
mance. The clSpMV column lists the performance achieved
by clSpMV framework. The clSpMV Format column lists
the decision made by clSpMV. The percentage numbers fol-
lowing the formats refer to the portions of non-zeros covered
by the formats.

Table 2: The clSpMV performance on the selected 20 matrices, compared to implementations in [3], and all
the single formats supported by clSpMV on Nvidia GTX 480. The highest achieved performance for each
matrix is in bold.

Benchmark NV CUDA Single All clSpMV
Name NV HYB Best NV Best NV Best Single Best Single clSpMV clSpMV

(GFLOPS) (GFLOPS) Format (GFLOPS) Format (GFLOPS) Format
Dense 8.38 32.63 CSR 54.08 BCSR 53.05 BCSR
Protein 15 23.17 CSR 35.84 SBELL 35.86 SBELL

FEM/Spheres 25.11 25.11 HYB 34.44 SBELL 34.52 SBELL
FEM/Cantilever 19.06 34.9 DIA 35.03 SBELL 35.10 SBELL
Wind Tunnel 25.07 25.07 HYB 42.94 SBELL 42.94 SBELL
FEM/Harbor 11.67 13.83 CSR 27.17 SBELL 27.21 SBELL

QCD 25.05 25.09 ELL 30.93 SELL 29.88 ELL
FEM/Ship 19.11 19.11 HYB 40.59 SBELL 40.73 SBELL
Economics 7.61 7.61 HYB 7.32 SELL 10.59 ELL(81%)COO(19%)

Epidemiology 24.02 24.02 ELL 25.36 SELL 26.55 ELL
FEM/Accelerator 9.35 9.35 HYB 16.29 SBELL 15.25 SELL

Circuit 7.35 7.35 HYB 7.72 SELL 11.40 ELL(84%)COO(16%)
Webbase 9.74 9.74 HYB 7.30 COO 12.77 ELL(64%)COO(36%)

LP 8.89 12.78 CSR 12.99 BCSR 12.98 BCSR

circuit5M 12.81 12.81 HYB 9.02 COO 17.07 DIA(9%)SELL(73%)COO(18%)
eu-2005 12.14 12.14 HYB 11.84 SBELL 16.03 SELL(85%)COO(15%)

Ga41As41H72 13.28 16.11 CSR 16.11 CSR 16.80 BDIA(18%)ELL(32%)CSR(50%)
in-2004 10.53 10.53 HYB 12.04 SBELL 16.87 SELL(79%)COO(21%)
mip1 10.8 18.92 CSR 18.92 CSR 19.00 SBELL(80%)SELL(17%)COO(3%)

Si41Ge41H72 12 17.68 CSR 17.68 CSR 18.77 BDIA(15%)ELL(27%)CSR(58%)

Table 3 summarizes the improvement ratios of clSpMV
compared to all other implementations based on the per-
formance numbers in Table 2. On average, clSpMV is 83%
faster than the CUDA implementation of the proposed HYB
format in [3]; 63.6% faster than all CUDA implementations
in [3]; and 16.8% faster than all single formats supported by
clSpMV.
For the 14 matrices from [20], most of them have regu-

lar structures, and the total number of non-zeros are small.
Therefore, they favor single format representation. As shown
in Table 2, most of the time clSpMV can successfully find
the best single representations that match the results in the
Best Single Format column. Even if the chosen format is not
the same, the performance difference is very small. There
are three matrices that the clSpMV matches the HYB for-
mat in [3]. The reason that clSpMV outperforms the CUDA
implementation of the HYB format is due to three factors.
First, the HYB format in [3] assumes that ELL format is 3
times faster than COO format. In contrast, clSpMV uses
the more accurate offline benchmarking numbers. Second,
the COO implementation in [3] needs three kernel launches,
but clSpMV only needs two. Third, the number of work
groups (or thread blocks) used by the COO implementa-
tion in [3] is fixed. However, clSpMV chooses the best work
group size based on the offline benchmarking information.
For the 6 additional matrices from [7], clSpMV partitions

them into many submatrices. clSpMV achieves significant
improvements on three matrices (40%− 90% better perfor-
mance), but small improvements on the other three matrices
(0.4%−6%). This is due to texture memory. Texture mem-
ory boosts CSR performance from 10 GFLOPS to 16 − 18
GFLOPS. Therefore, the data access pattern of CSR has
very high hit rate on the texture cache. Though CSR perfor-
mance is good, clSpMV achieves even greater performance.
Theoretically, the Cocktail Format should outperform every
single format. In practice, clSpMV uses good policies to
find reasonable matrix partitions, represents them using the
Cocktail Format, and achieves better performance compared
to all other single formats.

Table 3: The improvement of clSpMV compared to
the hybrid format in [3], the best implementations
in [3], and the best single format implementations
supported by clSpMV.

Benchmark clSpMV Improvement
Name NV HYB Best NV Best Single
Dense 533.1% 62.6% -1.9%
Protein 139.1% 54.8% 0.1%

FEM/Spheres 37.5% 37.5% 0.2%
FEM/Cantilever 84.2% 0.6% 0.2%
Wind Tunnel 71.3% 212.5% 0.0%
FEM/Harbor 133.1% 96.7% 0.1%

QCD 19.3% 19.1% -3.4%
FEM/Ship 113.1% 123.4% 0.3%
Economics 39.2% 85.2% 44.7%

Epidemiology 10.5% 10.5% 4.7%
FEM/Accelerator 63.1% 97.5% -6.4%

Circuit 55.1% 124.9% 47.6%
Webbase 31.1% 74.9% 74.9%

LP 46.0% 1.5% -0.1%

circuit5M 33.3% 89.2% 89.2%
eu-2005 32.1% 82.4% 35.5%

Ga41As41H72 26.5% 4.3% 4.3%
in-2004 60.2% 86.8% 40.1%
mip1 75.9% 0.4% 0.4%

Si41Ge41H72 56.4% 6.2% 6.2%

Average 83.0% 63.6% 16.8%

5.3 Experimental Results on ATI Radeon 6970
The experimental settings on the AMD platform are very

similar to that on the Nvidia platform. The performance
benchmarking results are summarized in Figure 11. More
performance numbers at the top-right corners are missing
because the required matrix storage sizes of these sample
points exceed 256 MB, the largest consecutive memory size
allowed by the AMD OpenCL runtime. We are not aware
of any SpMV project that targets AMD platforms, so we
only compare clSpMV with the single format implementa-
tions supported by clSpMV. The results are shown in Table
4. On average, the performance of clSpMV is 43.3% higher
than all the single format implementations. On the dense

Figure 11: The performance benchmarking on the ATI Radeon 6970 platform. The x axis is the dimension
of the matrix. On row 1 and 3, the y axis is the number of non-zeros per row. On row 2, the y axis is the
number of dense blocks per superrow. The unit of the color-bar is in GFLOPS.

matrix and the LP matrix, clSpMV chooses the right single
format, but the chosen block size is not optimal, and the
performance is worse than the best single format. An of-
fline benchmarking procedure with wider and denser sample
points can give better execution time estimates, and enable
clSpMV to find the best block size.
When comparing Table 2, Table 4, Figure 10, and Figure

11, we see that clSpMV makes decisions based on platform
strengths. Since the BDIA format achieves significant higher
performance than all other formats on the AMD platform, it
favors BDIA format whenever possible. Moreover, the ELL
performance on the AMD platform is significantly better
than the COO performance, so the clSpMV increases the
ratio of the ELL portion on the AMD platform.

6. CONCLUSION
In this paper, we have proposed a new sparse matrix for-

mat, the Cocktail Format, and the clSpMV framework, an
OpenCL SpMV framework on GPU platforms. Theoreti-
cally, the Cocktail Format is a superset over all single sparse
matrix formats, so its performance should be better than,
or at least equal to all single formats. In practice, with the

help of the clSpMV framework, we have achieved 16.8% bet-
ter performance than any single formats on the Nvidia GTX
480 platform, and 43.3% better performance on the AMD
Radeon 6970 platform. Although solutions that are portable
across diverse platforms generally provide lower performance
when compared to solutions that are specialized to partic-
ular platforms, we achieved 83% better performance com-
pared to the CUDA implementation of the proposed HYB
format in [3]; and 63.6% better performance compared to all
CUDA implementations in [3]. In conclusion, the Cocktail
Format delivers better SpMV performance both theoreti-
cally and practically; clSpMV is a cross-platform framework
that is able to choose the best representation of any given
matrices, and deliver very high performance SpMV kernels.

7. ACKNOWLEDGMENTS
Thanks to Nadathur Satish for reviewing and comment-

ing the clSpMV framework. Research supported by Mi-
crosoft (Award #024263) and Intel (Award #024894) fund-
ing, and by matching funding from U.C. Discovery (Award
#DIG07− 10227).

Table 4: The clSpMV performance on the selected 20 matrices, compared to all the single formats supported
by clSpMV on AMD Radeon 6970. The highest achieved performance for each matrix is in bold.

Benchmark Single All clSpMV
Name Best Single Best Single clSpMV clSpMV Improvement

(GFLOPS) Format (GFLOPS) Format
Dense 46.85 BCSR 41.85 BCSR -10.7%
Protein 29.91 SBELL 30.99 BDIA(43%)SBELL(57%) 3.6%

FEM/Spheres 31.85 SBELL 31.44 SBELL -1.3%
FEM/Cantilever 33.72 DIA 35.93 BDIA(90%)ELL(10%) 6.5%
Wind Tunnel 35.23 SBELL 34.51 SBELL -2.0%
FEM/Harbor 22.29 SBELL 22.20 SBELL -0.4%

QCD 24.84 SELL 25.01 BELL 0.7%
FEM/Ship 33.75 SBELL 34.43 SBELL 2.0%
Economics 4.87 SELL 9.04 ELL(88%)COO(12%) 85.9%

Epidemiology 22.51 ELL 22.58 ELL 0.3%
FEM/Accelerator 15.83 SELL 15.51 SELL -2.0%

Circuit 3.06 COO 8.40 ELL(88%)COO(12%) 174.7%
Webbase 3.26 COO 6.42 ELL(70%)COO(30%) 97.0%

LP 10.03 BCSR 9.50 BCSR -5.3%

circuit5M 3.21 COO 8.06 SELL(82%)COO(18%) 150.7%
eu-2005 3.01 COO 8.19 ELL(83%)COO(17%) 172.1%

Ga41As41H72 4.70 CSR 6.93 BDIA(18%)ELL(32%)CSR(50%) 47.5%
in-2004 3.04 COO 7.42 SBELL(28%)ELL(53%)COO(19%) 144.2%
mip1 8.27 BCSR 8.28 BDIA(20%)SBELL(62%)SELL(14%)COO(4%) 0.2%

Si41Ge41H72 10.81 SBELL 11.10 BDIA(15%)SBELL(85%) 2.7%

Average 43.3%

8. REFERENCES

[1] AMD. ATI Stream Computing User Guide, 2008.

[2] AMD. AMD Accelerated Parallel Processing OpenCL
Programming Guide, 2011.
http://developer.amd.com/zones/OpenCLZone.

[3] N. Bell and M. Garland. Implementing sparse
matrix-vector multiplication on throughput-oriented
processors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, pages 18:1–18:11, New York, USA, 2009.

[4] R. Bordawekar and M. M. Baskaran. Optimizing sparse
matrix-vector multiplication on gpus. In Ninth SIAM
Conference on Parallel Processing for Scientific
Computing, 2008.

[5] A. Buluc, and, S. Williams, L. Oliker, and J. Demmel.
Reduced-bandwidth multithreaded algorithms for sparse
matrix-vector multiplication. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pages 721–733, may 2011.

[6] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on gpus. In
Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
115–126, New York, USA, 2010.

[7] T. A. Davis and Y. Hu. University of florida sparse matrix
collection. 38(1), 2011.
http://www.cise.ufl.edu/research/sparse/matrices.

[8] D. Grewe and A. Lokhmotov. Automatically generating
and tuning gpu code for sparse matrix-vector multiplication
from a high-level representation. In Proceedings of the
Fourth Workshop on General Purpose Processing on
Graphics Processing Units, pages 12:1–12:8, New York,
USA, 2011.

[9] R. G. Grimes, D. R. Kincaid, and D. M. Young. Itpack 2.0
user’s guide. Technical Report CNA-150, University of
Texas, Austin, TX, USA, August 1979.

[10] P. Guo and L. Wang. Auto-tuning cuda parameters for
sparse matrix-vector multiplication on gpus. In
International Conference on Computational and
Information Sciences (ICCIS), pages 1154–1157, 2010.

[11] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization
framework for sparse matrix kernels. International Journal

of High Performance Computing Applications, pages
18:135–18:158, February 2004.

[12] Intel. Intel Advanced Vector Extensions Programming
Reference. 2009. http://software.intel.com/en-us/avx.

[13] A. Monakov, A. Lokhmotov, and A. Avetisyan.
Automatically tuning sparse matrix-vector multiplication
for gpu architectures. High Performance Embedded
Architectures and Compilers, pages 111–125, 2010.

[14] Nvidia. Nvidia cuda, 2007. http://nvidia.com/cuda.

[15] S. Thakkur and T. Huff. Internet streaming simd
extensions. Intel Technology Journal Q2, 32(12):26–34, dec
1999.

[16] The Khronos OpenCL Working Group. OpenCL - The
open standard for parallel programming of heterogeneous
systems, 2011. http://www.khronos.org/opencl.

[17] F. Vázquez, G. Ortega, J. Fernández, and E. Garzón.
Improving the performance of the sparse matrix vector
product with gpus. In IEEE 10th International Conference
on Computer and Information Technology (CIT), pages
1146–1151, 2010.

[18] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library
of automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 2005, Journal of Physics:
Conference Series, June 2005.

[19] R. W. Vuduc. Automatic performance tuning of sparse
matrix kernels. PhD thesis, University of California,
Berkeley, CA, USA, January 2004.

[20] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. In
Proceedings of the ACM/IEEE conference on
Supercomputing, pages 38:1–38:12, New York, USA, 2007.

[21] S. W. Williams, A. Waterman, and D. A. Patterson.
Roofline: An insightful visual performance model for
floating-point programs and multicore architectures.
Technical Report UCB/EECS-2008-134, EECS
Department, University of California, Berkeley, Oct 2008.

[22] S. Yousef. Iterative methods for sparse linear systems.
Society for Industrial and Applied Mathematics, 2003.

